689 lines
21 KiB
C++
689 lines
21 KiB
C++
#include "qaesencryption.h"
|
|
|
|
#ifdef USE_INTEL_AES_IF_AVAILABLE
|
|
#include "aesni/aesni-key-exp.h"
|
|
#include "aesni/aesni-key-init.h"
|
|
#include "aesni/aesni-enc-ecb.h"
|
|
#include "aesni/aesni-enc-cbc.h"
|
|
#endif
|
|
|
|
/*
|
|
* Static Functions
|
|
* */
|
|
QByteArray QAESEncryption::Crypt(QAESEncryption::Aes level, QAESEncryption::Mode mode, const QByteArray &rawText,
|
|
const QByteArray &key, const QByteArray &iv, QAESEncryption::Padding padding)
|
|
{
|
|
return QAESEncryption(level, mode, padding).encode(rawText, key, iv);
|
|
}
|
|
|
|
QByteArray QAESEncryption::Decrypt(QAESEncryption::Aes level, QAESEncryption::Mode mode, const QByteArray &rawText,
|
|
const QByteArray &key, const QByteArray &iv, QAESEncryption::Padding padding)
|
|
{
|
|
return QAESEncryption(level, mode, padding).decode(rawText, key, iv);
|
|
}
|
|
|
|
QByteArray QAESEncryption::ExpandKey(QAESEncryption::Aes level, QAESEncryption::Mode mode, const QByteArray &key, bool isEncryptionKey)
|
|
{
|
|
return QAESEncryption(level, mode).expandKey(key, isEncryptionKey);
|
|
}
|
|
|
|
QByteArray QAESEncryption::RemovePadding(const QByteArray &rawText, QAESEncryption::Padding padding)
|
|
{
|
|
if (rawText.isEmpty())
|
|
return rawText;
|
|
|
|
QByteArray ret(rawText);
|
|
switch (padding)
|
|
{
|
|
case Padding::ZERO:
|
|
//Works only if the last byte of the decoded array is not zero
|
|
while (ret.at(ret.length()-1) == 0x00)
|
|
ret.remove(ret.length()-1, 1);
|
|
break;
|
|
case Padding::PKCS7:
|
|
#if QT_VERSION >= QT_VERSION_CHECK(5, 10, 0)
|
|
ret.remove(ret.length() - ret.back(), ret.back());
|
|
#else
|
|
ret.remove(ret.length() - ret.at(ret.length() - 1), ret.at(ret.length() - 1));
|
|
#endif
|
|
break;
|
|
case Padding::ISO:
|
|
{
|
|
// Find the last byte which is not zero
|
|
int marker_index = ret.length() - 1;
|
|
for (; marker_index >= 0; --marker_index)
|
|
{
|
|
if (ret.at(marker_index) != 0x00)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
// And check if it's the byte for marking padding
|
|
if (ret.at(marker_index) == '\x80')
|
|
{
|
|
ret.truncate(marker_index);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
//do nothing
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
/*
|
|
* End Static function declarations
|
|
* */
|
|
|
|
/*
|
|
* Local Functions
|
|
* */
|
|
|
|
namespace {
|
|
|
|
quint8 xTime(quint8 x)
|
|
{
|
|
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
|
|
}
|
|
|
|
quint8 multiply(quint8 x, quint8 y)
|
|
{
|
|
return (((y & 1) * x) ^ ((y>>1 & 1) * xTime(x)) ^ ((y>>2 & 1) * xTime(xTime(x))) ^ ((y>>3 & 1)
|
|
* xTime(xTime(xTime(x)))) ^ ((y>>4 & 1) * xTime(xTime(xTime(xTime(x))))));
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* End Local functions
|
|
* */
|
|
|
|
QAESEncryption::QAESEncryption(Aes level, Mode mode,
|
|
Padding padding)
|
|
: m_nb(4), m_blocklen(16), m_level(level), m_mode(mode), m_padding(padding)
|
|
, m_aesNIAvailable(false), m_state(nullptr)
|
|
{
|
|
#ifdef USE_INTEL_AES_IF_AVAILABLE
|
|
m_aesNIAvailable = check_aesni_support();
|
|
#endif
|
|
|
|
switch (level)
|
|
{
|
|
case AES_128: {
|
|
AES128 aes;
|
|
m_nk = aes.nk;
|
|
m_keyLen = aes.keylen;
|
|
m_nr = aes.nr;
|
|
m_expandedKey = aes.expandedKey;
|
|
}
|
|
break;
|
|
case AES_192: {
|
|
AES192 aes;
|
|
m_nk = aes.nk;
|
|
m_keyLen = aes.keylen;
|
|
m_nr = aes.nr;
|
|
m_expandedKey = aes.expandedKey;
|
|
}
|
|
break;
|
|
case AES_256: {
|
|
AES256 aes;
|
|
m_nk = aes.nk;
|
|
m_keyLen = aes.keylen;
|
|
m_nr = aes.nr;
|
|
m_expandedKey = aes.expandedKey;
|
|
}
|
|
break;
|
|
default: {
|
|
AES128 aes;
|
|
m_nk = aes.nk;
|
|
m_keyLen = aes.keylen;
|
|
m_nr = aes.nr;
|
|
m_expandedKey = aes.expandedKey;
|
|
}
|
|
break;
|
|
}
|
|
|
|
}
|
|
QByteArray QAESEncryption::getPadding(int currSize, int alignment)
|
|
{
|
|
int size = (alignment - currSize % alignment) % alignment;
|
|
switch(m_padding)
|
|
{
|
|
case Padding::ZERO:
|
|
return QByteArray(size, 0x00);
|
|
break;
|
|
case Padding::PKCS7:
|
|
if (size == 0)
|
|
size = alignment;
|
|
return QByteArray(size, size);
|
|
break;
|
|
case Padding::ISO:
|
|
if (size > 0)
|
|
return QByteArray (size - 1, 0x00).prepend('\x80');
|
|
break;
|
|
default:
|
|
return QByteArray(size, 0x00);
|
|
break;
|
|
}
|
|
return QByteArray();
|
|
}
|
|
|
|
QByteArray QAESEncryption::expandKey(const QByteArray &key, bool isEncryptionKey)
|
|
{
|
|
|
|
#ifdef USE_INTEL_AES_IF_AVAILABLE
|
|
if (m_aesNIAvailable){
|
|
switch(m_level) {
|
|
case AES_128: {
|
|
AES128 aes128;
|
|
AES_KEY aesKey;
|
|
if(isEncryptionKey){
|
|
AES_set_encrypt_key((unsigned char*) key.constData(), aes128.userKeySize, &aesKey);
|
|
}else{
|
|
AES_set_decrypt_key((unsigned char*) key.constData(), aes128.userKeySize, &aesKey);
|
|
}
|
|
|
|
QByteArray expKey;
|
|
expKey.resize(aes128.expandedKey);
|
|
memcpy(expKey.data(), (char*) aesKey.KEY, aes128.expandedKey);
|
|
memset(aesKey.KEY, 0, 240);
|
|
return expKey;
|
|
}
|
|
break;
|
|
case AES_192: {
|
|
AES192 aes192;
|
|
AES_KEY aesKey;
|
|
if(isEncryptionKey){
|
|
AES_set_encrypt_key((unsigned char*) key.constData(), aes192.userKeySize, &aesKey);
|
|
}else{
|
|
AES_set_decrypt_key((unsigned char*) key.constData(), aes192.userKeySize, &aesKey);
|
|
}
|
|
|
|
QByteArray expKey;
|
|
expKey.resize(aes192.expandedKey);
|
|
memcpy(expKey.data(), (char*) aesKey.KEY, aes192.expandedKey);
|
|
memset(aesKey.KEY, 0, 240);
|
|
return expKey;
|
|
}
|
|
break;
|
|
case AES_256: {
|
|
AES256 aes256;
|
|
AES_KEY aesKey;
|
|
if(isEncryptionKey){
|
|
AES_set_encrypt_key((unsigned char*) key.constData(), aes256.userKeySize, &aesKey);
|
|
}else{
|
|
AES_set_decrypt_key((unsigned char*) key.constData(), aes256.userKeySize, &aesKey);
|
|
}
|
|
|
|
QByteArray expKey;
|
|
expKey.resize(aes256.expandedKey);
|
|
memcpy(expKey.data(), (char*) aesKey.KEY, aes256.expandedKey);
|
|
memset(aesKey.KEY, 0, 240);
|
|
return expKey;
|
|
}
|
|
break;
|
|
default:
|
|
return QByteArray();
|
|
break;
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
|
|
int i, k;
|
|
quint8 tempa[4]; // Used for the column/row operations
|
|
QByteArray roundKey(key); // The first round key is the key itself.
|
|
|
|
// All other round keys are found from the previous round keys.
|
|
//i == Nk
|
|
for(i = m_nk; i < m_nb * (m_nr + 1); i++)
|
|
{
|
|
tempa[0] = (quint8) roundKey.at((i-1) * 4 + 0);
|
|
tempa[1] = (quint8) roundKey.at((i-1) * 4 + 1);
|
|
tempa[2] = (quint8) roundKey.at((i-1) * 4 + 2);
|
|
tempa[3] = (quint8) roundKey.at((i-1) * 4 + 3);
|
|
|
|
if (i % m_nk == 0)
|
|
{
|
|
// This function shifts the 4 bytes in a word to the left once.
|
|
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
|
|
|
|
// Function RotWord()
|
|
k = tempa[0];
|
|
tempa[0] = tempa[1];
|
|
tempa[1] = tempa[2];
|
|
tempa[2] = tempa[3];
|
|
tempa[3] = k;
|
|
|
|
// Function Subword()
|
|
tempa[0] = getSBoxValue(tempa[0]);
|
|
tempa[1] = getSBoxValue(tempa[1]);
|
|
tempa[2] = getSBoxValue(tempa[2]);
|
|
tempa[3] = getSBoxValue(tempa[3]);
|
|
|
|
tempa[0] = tempa[0] ^ Rcon[i/m_nk];
|
|
}
|
|
|
|
if (m_level == AES_256 && i % m_nk == 4)
|
|
{
|
|
// Function Subword()
|
|
tempa[0] = getSBoxValue(tempa[0]);
|
|
tempa[1] = getSBoxValue(tempa[1]);
|
|
tempa[2] = getSBoxValue(tempa[2]);
|
|
tempa[3] = getSBoxValue(tempa[3]);
|
|
}
|
|
roundKey.insert(i * 4 + 0, (quint8) roundKey.at((i - m_nk) * 4 + 0) ^ tempa[0]);
|
|
roundKey.insert(i * 4 + 1, (quint8) roundKey.at((i - m_nk) * 4 + 1) ^ tempa[1]);
|
|
roundKey.insert(i * 4 + 2, (quint8) roundKey.at((i - m_nk) * 4 + 2) ^ tempa[2]);
|
|
roundKey.insert(i * 4 + 3, (quint8) roundKey.at((i - m_nk) * 4 + 3) ^ tempa[3]);
|
|
}
|
|
return roundKey;
|
|
}
|
|
}
|
|
|
|
// This function adds the round key to state.
|
|
// The round key is added to the state by an XOR function.
|
|
void QAESEncryption::addRoundKey(const quint8 round, const QByteArray &expKey)
|
|
{
|
|
QByteArray::iterator it = m_state->begin();
|
|
for(int i=0; i < 16; ++i)
|
|
it[i] = (quint8) it[i] ^ (quint8) expKey.at(round * m_nb * 4 + (i/4) * m_nb + (i%4));
|
|
}
|
|
|
|
// The SubBytes Function Substitutes the values in the
|
|
// state matrix with values in an S-box.
|
|
void QAESEncryption::subBytes()
|
|
{
|
|
QByteArray::iterator it = m_state->begin();
|
|
for(int i = 0; i < 16; i++)
|
|
it[i] = getSBoxValue((quint8) it[i]);
|
|
}
|
|
|
|
// The ShiftRows() function shifts the rows in the state to the left.
|
|
// Each row is shifted with different offset.
|
|
// Offset = Row number. So the first row is not shifted.
|
|
void QAESEncryption::shiftRows()
|
|
{
|
|
QByteArray::iterator it = m_state->begin();
|
|
quint8 temp;
|
|
//Keep in mind that QByteArray is column-driven!!
|
|
|
|
//Shift 1 to left
|
|
temp = (quint8)it[1];
|
|
it[1] = (quint8)it[5];
|
|
it[5] = (quint8)it[9];
|
|
it[9] = (quint8)it[13];
|
|
it[13] = (quint8)temp;
|
|
|
|
//Shift 2 to left
|
|
temp = (quint8)it[2];
|
|
it[2] = (quint8)it[10];
|
|
it[10] = (quint8)temp;
|
|
temp = (quint8)it[6];
|
|
it[6] = (quint8)it[14];
|
|
it[14] = (quint8)temp;
|
|
|
|
//Shift 3 to left
|
|
temp = (quint8)it[3];
|
|
it[3] = (quint8)it[15];
|
|
it[15] = (quint8)it[11];
|
|
it[11] = (quint8)it[7];
|
|
it[7] = (quint8)temp;
|
|
}
|
|
|
|
// MixColumns function mixes the columns of the state matrix
|
|
//optimized!!
|
|
void QAESEncryption::mixColumns()
|
|
{
|
|
QByteArray::iterator it = m_state->begin();
|
|
quint8 tmp, tm, t;
|
|
|
|
for(int i = 0; i < 16; i += 4){
|
|
t = (quint8)it[i];
|
|
tmp = (quint8)it[i] ^ (quint8)it[i+1] ^ (quint8)it[i+2] ^ (quint8)it[i+3] ;
|
|
|
|
tm = xTime( (quint8)it[i] ^ (quint8)it[i+1] );
|
|
it[i] = (quint8)it[i] ^ (quint8)tm ^ (quint8)tmp;
|
|
|
|
tm = xTime( (quint8)it[i+1] ^ (quint8)it[i+2]);
|
|
it[i+1] = (quint8)it[i+1] ^ (quint8)tm ^ (quint8)tmp;
|
|
|
|
tm = xTime( (quint8)it[i+2] ^ (quint8)it[i+3]);
|
|
it[i+2] =(quint8)it[i+2] ^ (quint8)tm ^ (quint8)tmp;
|
|
|
|
tm = xTime((quint8)it[i+3] ^ (quint8)t);
|
|
it[i+3] =(quint8)it[i+3] ^ (quint8)tm ^ (quint8)tmp;
|
|
}
|
|
}
|
|
|
|
// MixColumns function mixes the columns of the state matrix.
|
|
// The method used to multiply may be difficult to understand for the inexperienced.
|
|
// Please use the references to gain more information.
|
|
void QAESEncryption::invMixColumns()
|
|
{
|
|
QByteArray::iterator it = m_state->begin();
|
|
quint8 a,b,c,d;
|
|
for(int i = 0; i < 16; i+=4){
|
|
a = (quint8) it[i];
|
|
b = (quint8) it[i+1];
|
|
c = (quint8) it[i+2];
|
|
d = (quint8) it[i+3];
|
|
|
|
it[i] = (quint8) (multiply(a, 0x0e) ^ multiply(b, 0x0b) ^ multiply(c, 0x0d) ^ multiply(d, 0x09));
|
|
it[i+1] = (quint8) (multiply(a, 0x09) ^ multiply(b, 0x0e) ^ multiply(c, 0x0b) ^ multiply(d, 0x0d));
|
|
it[i+2] = (quint8) (multiply(a, 0x0d) ^ multiply(b, 0x09) ^ multiply(c, 0x0e) ^ multiply(d, 0x0b));
|
|
it[i+3] = (quint8) (multiply(a, 0x0b) ^ multiply(b, 0x0d) ^ multiply(c, 0x09) ^ multiply(d, 0x0e));
|
|
}
|
|
}
|
|
|
|
// The SubBytes Function Substitutes the values in the
|
|
// state matrix with values in an S-box.
|
|
void QAESEncryption::invSubBytes()
|
|
{
|
|
QByteArray::iterator it = m_state->begin();
|
|
for(int i = 0; i < 16; ++i)
|
|
it[i] = getSBoxInvert((quint8) it[i]);
|
|
}
|
|
|
|
void QAESEncryption::invShiftRows()
|
|
{
|
|
QByteArray::iterator it = m_state->begin();
|
|
uint8_t temp;
|
|
|
|
//Keep in mind that QByteArray is column-driven!!
|
|
|
|
//Shift 1 to right
|
|
temp = (quint8)it[13];
|
|
it[13] = (quint8)it[9];
|
|
it[9] = (quint8)it[5];
|
|
it[5] = (quint8)it[1];
|
|
it[1] = (quint8)temp;
|
|
|
|
//Shift 2
|
|
temp = (quint8)it[10];
|
|
it[10] = (quint8)it[2];
|
|
it[2] = (quint8)temp;
|
|
temp = (quint8)it[14];
|
|
it[14] = (quint8)it[6];
|
|
it[6] = (quint8)temp;
|
|
|
|
//Shift 3
|
|
temp = (quint8)it[7];
|
|
it[7] = (quint8)it[11];
|
|
it[11] = (quint8)it[15];
|
|
it[15] = (quint8)it[3];
|
|
it[3] = (quint8)temp;
|
|
}
|
|
|
|
QByteArray QAESEncryption::byteXor(const QByteArray &a, const QByteArray &b)
|
|
{
|
|
QByteArray::const_iterator it_a = a.begin();
|
|
QByteArray::const_iterator it_b = b.begin();
|
|
QByteArray ret;
|
|
|
|
//for(int i = 0; i < m_blocklen; i++)
|
|
for(int i = 0; i < std::min(a.size(), b.size()); i++)
|
|
ret.insert(i,it_a[i] ^ it_b[i]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Cipher is the main function that encrypts the PlainText.
|
|
QByteArray QAESEncryption::cipher(const QByteArray &expKey, const QByteArray &in)
|
|
{
|
|
|
|
//m_state is the input buffer...
|
|
QByteArray output(in);
|
|
m_state = &output;
|
|
|
|
// Add the First round key to the state before starting the rounds.
|
|
addRoundKey(0, expKey);
|
|
|
|
// There will be Nr rounds.
|
|
// The first Nr-1 rounds are identical.
|
|
// These Nr-1 rounds are executed in the loop below.
|
|
for(quint8 round = 1; round < m_nr; ++round){
|
|
subBytes();
|
|
shiftRows();
|
|
mixColumns();
|
|
addRoundKey(round, expKey);
|
|
}
|
|
|
|
// The last round is given below.
|
|
// The MixColumns function is not here in the last round.
|
|
subBytes();
|
|
shiftRows();
|
|
addRoundKey(m_nr, expKey);
|
|
|
|
return output;
|
|
}
|
|
|
|
QByteArray QAESEncryption::invCipher(const QByteArray &expKey, const QByteArray &in)
|
|
{
|
|
//m_state is the input buffer.... handle it!
|
|
QByteArray output(in);
|
|
m_state = &output;
|
|
|
|
// Add the First round key to the state before starting the rounds.
|
|
addRoundKey(m_nr, expKey);
|
|
|
|
// There will be Nr rounds.
|
|
// The first Nr-1 rounds are identical.
|
|
// These Nr-1 rounds are executed in the loop below.
|
|
for(quint8 round=m_nr-1; round>0 ; round--){
|
|
invShiftRows();
|
|
invSubBytes();
|
|
addRoundKey(round, expKey);
|
|
invMixColumns();
|
|
}
|
|
|
|
// The last round is given below.
|
|
// The MixColumns function is not here in the last round.
|
|
invShiftRows();
|
|
invSubBytes();
|
|
addRoundKey(0, expKey);
|
|
|
|
return output;
|
|
}
|
|
|
|
QByteArray QAESEncryption::printArray(uchar* arr, int size)
|
|
{
|
|
QByteArray print("");
|
|
for(int i=0; i<size; i++)
|
|
print.append(arr[i]);
|
|
|
|
return print.toHex();
|
|
}
|
|
|
|
QByteArray QAESEncryption::encode(const QByteArray &rawText, const QByteArray &key, const QByteArray &iv)
|
|
{
|
|
if ((m_mode >= CBC && (iv.isEmpty() || iv.size() != m_blocklen)) || key.size() != m_keyLen)
|
|
return QByteArray();
|
|
|
|
QByteArray expandedKey = expandKey(key, true);
|
|
QByteArray alignedText(rawText);
|
|
|
|
//Fill array with padding
|
|
alignedText.append(getPadding(rawText.size(), m_blocklen));
|
|
|
|
switch(m_mode)
|
|
{
|
|
case ECB: {
|
|
#ifdef USE_INTEL_AES_IF_AVAILABLE
|
|
if (m_aesNIAvailable){
|
|
char expKey[expandedKey.size()];
|
|
memcpy(expKey, expandedKey.data(), expandedKey.size());
|
|
|
|
QByteArray outText;
|
|
outText.resize(alignedText.size());
|
|
AES_ECB_encrypt((unsigned char*) alignedText.constData(),
|
|
(unsigned char*) outText.data(),
|
|
alignedText.size(),
|
|
expKey,
|
|
m_nr);
|
|
return outText;
|
|
}
|
|
#endif
|
|
QByteArray ret;
|
|
for(int i=0; i < alignedText.size(); i+= m_blocklen)
|
|
ret.append(cipher(expandedKey, alignedText.mid(i, m_blocklen)));
|
|
return ret;
|
|
}
|
|
break;
|
|
case CBC: {
|
|
#ifdef USE_INTEL_AES_IF_AVAILABLE
|
|
if (m_aesNIAvailable){
|
|
quint8 ivec[iv.size()];
|
|
memcpy(ivec, iv.data(), iv.size());
|
|
char expKey[expandedKey.size()];
|
|
memcpy(expKey, expandedKey.data(), expandedKey.size());
|
|
|
|
QByteArray outText;
|
|
outText.resize(alignedText.size());
|
|
AES_CBC_encrypt((unsigned char*) alignedText.constData(),
|
|
(unsigned char*) outText.data(),
|
|
ivec,
|
|
alignedText.size(),
|
|
expKey,
|
|
m_nr);
|
|
return outText;
|
|
}
|
|
#endif
|
|
QByteArray ret;
|
|
QByteArray ivTemp(iv);
|
|
for(int i=0; i < alignedText.size(); i+= m_blocklen) {
|
|
alignedText.replace(i, m_blocklen, byteXor(alignedText.mid(i, m_blocklen),ivTemp));
|
|
ret.append(cipher(expandedKey, alignedText.mid(i, m_blocklen)));
|
|
ivTemp = ret.mid(i, m_blocklen);
|
|
}
|
|
return ret;
|
|
}
|
|
break;
|
|
case CFB: {
|
|
QByteArray ret;
|
|
ret.append(byteXor(alignedText.left(m_blocklen), cipher(expandedKey, iv)));
|
|
for(int i=0; i < alignedText.size(); i+= m_blocklen) {
|
|
if (i+m_blocklen < alignedText.size())
|
|
ret.append(byteXor(alignedText.mid(i+m_blocklen, m_blocklen),
|
|
cipher(expandedKey, ret.mid(i, m_blocklen))));
|
|
}
|
|
return ret;
|
|
}
|
|
break;
|
|
case OFB: {
|
|
QByteArray ret;
|
|
QByteArray ofbTemp;
|
|
ofbTemp.append(cipher(expandedKey, iv));
|
|
for (int i=m_blocklen; i < alignedText.size(); i += m_blocklen){
|
|
ofbTemp.append(cipher(expandedKey, ofbTemp.right(m_blocklen)));
|
|
}
|
|
ret.append(byteXor(alignedText, ofbTemp));
|
|
return ret;
|
|
}
|
|
break;
|
|
default: break;
|
|
}
|
|
return QByteArray();
|
|
}
|
|
|
|
QByteArray QAESEncryption::decode(const QByteArray &rawText, const QByteArray &key, const QByteArray &iv)
|
|
{
|
|
if ((m_mode >= CBC && (iv.isEmpty() || iv.size() != m_blocklen)) || key.size() != m_keyLen)
|
|
return QByteArray();
|
|
|
|
QByteArray ret;
|
|
QByteArray expandedKey;
|
|
|
|
#ifdef USE_INTEL_AES_IF_AVAILABLE
|
|
if(m_aesNIAvailable && m_mode <= CBC){
|
|
expandedKey = expandKey(key, false);
|
|
}else{
|
|
expandedKey = expandKey(key, true);
|
|
}
|
|
#else
|
|
expandedKey = expandKey(key, true);
|
|
#endif
|
|
//false or true here is very important
|
|
//the expandedKeys aren't the same for !aes-ni! ENcryption and DEcryption (only CBC and EBC)
|
|
//but if you are !NOT! using aes-ni then the expandedKeys for encryption and decryption are the SAME!!!
|
|
|
|
|
|
switch(m_mode)
|
|
{
|
|
case ECB:
|
|
#ifdef USE_INTEL_AES_IF_AVAILABLE
|
|
if (m_aesNIAvailable){
|
|
char expKey[expandedKey.size()]; //expandedKey
|
|
memcpy(expKey, expandedKey.data(), expandedKey.size());
|
|
ret.resize(rawText.size());
|
|
|
|
AES_ECB_decrypt((unsigned char*) rawText.constData(),
|
|
(unsigned char*) ret.data(),
|
|
rawText.size(),
|
|
expKey,
|
|
m_nr);
|
|
break;
|
|
}
|
|
#endif
|
|
for(int i=0; i < rawText.size(); i+= m_blocklen)
|
|
ret.append(invCipher(expandedKey, rawText.mid(i, m_blocklen)));
|
|
break;
|
|
case CBC:
|
|
#ifdef USE_INTEL_AES_IF_AVAILABLE
|
|
if (m_aesNIAvailable){
|
|
quint8 ivec[iv.size()]; //IV
|
|
memcpy(ivec, iv.constData(), iv.size());
|
|
char expKey[expandedKey.size()]; //expandedKey
|
|
memcpy(expKey, expandedKey.data(), expandedKey.size());
|
|
ret.resize(rawText.size());
|
|
|
|
AES_CBC_decrypt((unsigned char*) rawText.constData(),
|
|
(unsigned char*) ret.data(),
|
|
ivec,
|
|
rawText.size(),
|
|
expKey,
|
|
m_nr);
|
|
break;
|
|
}
|
|
#endif
|
|
{
|
|
QByteArray ivTemp(iv);
|
|
for(int i=0; i < rawText.size(); i+= m_blocklen){
|
|
ret.append(invCipher(expandedKey, rawText.mid(i, m_blocklen)));
|
|
ret.replace(i, m_blocklen, byteXor(ret.mid(i, m_blocklen),ivTemp));
|
|
ivTemp = rawText.mid(i, m_blocklen);
|
|
}
|
|
}
|
|
break;
|
|
case CFB: {
|
|
ret.append(byteXor(rawText.mid(0, m_blocklen), cipher(expandedKey, iv)));
|
|
for(int i=0; i < rawText.size(); i+= m_blocklen){
|
|
if (i+m_blocklen < rawText.size()) {
|
|
ret.append(byteXor(rawText.mid(i+m_blocklen, m_blocklen),
|
|
cipher(expandedKey, rawText.mid(i, m_blocklen))));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case OFB: {
|
|
QByteArray ofbTemp;
|
|
ofbTemp.append(cipher(expandedKey, iv));
|
|
for (int i=m_blocklen; i < rawText.size(); i += m_blocklen){
|
|
ofbTemp.append(cipher(expandedKey, ofbTemp.right(m_blocklen)));
|
|
}
|
|
ret.append(byteXor(rawText, ofbTemp));
|
|
}
|
|
break;
|
|
default:
|
|
//do nothing
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
QByteArray QAESEncryption::removePadding(const QByteArray &rawText)
|
|
{
|
|
return RemovePadding(rawText, (Padding) m_padding);
|
|
}
|